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Abstract-The fundamental solutions and the boundary element method for obtaining numerical
solutions of nonlinear Reissner plates on an elastic foundation are presented in the paper. The
derivation of the fundamental solutions is mainly based on two ofHu's functions and the resolution
method ofdifferential operator. An incremental form ofthe boundary integral equations is suggested
to achieve linearization of the original nonlinear equations. The plate may be moderately thick or
sandwich plates with (or without) elastic foundation. Finally, three examples are considered to
illustrate the correctness and accuracy of the proposed method.

NOMENCLATURE

C 5Et/12(1 +v), for a homogeneous plate; Gc(h+ t), for a sandwich plate
Cw a part of boundary an of the solution domain n, on which deflection w is prescribed; CM,' CR' etc. are

defined similarly
D Et 3/12(I-v 2) for a homogeneous plate; E(h+ t)2t/2(I-v 2) for a sandwich plate
E modulus of elasticity
G E/2(I+v)
Gc core shear modulus
Gr shear modulus of Pasternak-type foundation
h core thickness
k reaction coefficient of Winkler-type foundation
kr reaction coefficient of Pasternak-type foundation
M i, bending moment
M ij twisting moment (i ¥- j)
Nij membrane force tensor
ni components of the outward normal to the boundary an
q lateral distributed load
Qi transverse shear force
r (X2+y2) 1/2

R. Qini+ N.w,.+ Nnsw,s
Si components of the tangent to the boundary an

plate thickness (or face-sheet thickness)
u I' U2 in-plane displacements
w lateral deflection
{) variational symbol
{)ij the Kronecker delta
8 arctg (y/x)
A fi/t for a homogeneous plate; 4(1 +v)Gc/E(h+ t)t for a sandwich plate
v Poisson's ratio
V2 a2/ax 2 +a2/ay2

!/Ji the average rotations normal to the plate mid-surface
(-) over a symbol denotes prescribed value.

1. INTRODUCTION

The boundary element method (BEM) is very popular as a numerical method in com
putational mechanics. The method has been widely used in linear bending problems (small
deflection) of thin plates [see reference lists in Tottenham (1979) and Stem and Lin (1986)]
and moderately thick plates [see e.g. Weeen (1982), Karam and Telles (1988) and Wang et
al. (1992)]. As a further progressive step, various boundary integral formulations have been
developed too treat large deflection of plates in the decade. Among the early proposals for
analysing finite deflection of thin plates as the so-called direct formulation of Kamiya and
Sawaki (1982a,b). Consequently, they extended their procedure to the case of sandwich
plates and shells [see e.g. Kamiya et al. (1983) and Kamiya and Sawaki (1984, 1986)].
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Another approach was proposed by Tanaka (1984). He obtained a couple boundary and
inner domain integral equations in terms of stress and displacement functions. Later on,
many researchers investigated the BEM for large deflection of plates with the so-called
generalized Green identities [see e.g. Ye and Liu (1985), Ye (199Ia) and Wang et ai. (1991)],
the dual reciprocity process (Sawaki et ai., 1989), the weighted residual method (Lei et al.,
1990) and the spline function (Ye, 199Ib). Postbuckling problems of thin plates have been
examined by Qin and Huang (1990) and Huang and Qin (1990) by using a newly derived
fundamental solution. Geometrically nonlinear plates on elastic foundation have been
considered by Katsikadelis (1991). Most of the developments in the field can also be found
in Beskos' work (1991).

More recently, Jin and Qin (1993) have developed a set of boundary integral equations
for analysing large deflection of Reissner plates based on the variational approach as well
as a modified variational functional. So far, however, there are very few results by BEM
for nonlinear Reissner plates on elastic foundations.

In this paper, a set of boundary integral formulations for nonlinear plates on an elastic
foundation is established by the variational approach (Jin and Qin, 1993). The plate may
have arbitrary shape and its boundary may be subjected to any type of boundary conditions.
Specifically, we derive, as the most important step of the BEM application, a group of
fundamental solutions for a Reissner plate on an elastic foundation by means of the
resolution method of differential operator and two of Hu's functions (Hu, 1963). An
iterative scheme is suggested to calculate domain unknown variables. Three examples of a
square plate, a circular plate and a 60° skew sandwich plate are numerically studied to
illustrate the efficiency and accuracy of the present approach.

2. BASIC EQUATIONS AND THEIR FUNDAMENTAL SOLUTIONS

2.1. Basic equations
Consider a Reissner plate of uniform thickness t, occupying a two-dimensional arbi

trary shaped region n bounded by its boundary an and resting on an elastic foundation.
We use a cartesian coordinate system in which the x- and y-axes lie in the plate middle
plane. Throughout this paper, repeated indices imply the summation convention ofEinstein.
The indices i, j and k take values in the range {1, 2}, and m takes a value in the range
{3, 4, 5}. The nonlinear behaviour of the plate for moderately large deflections is, in this
case, governed by the following equations (Lei et al., 1990):

(i) Equilibrium equations in n

Nij,j = 0, (i = 1,2)

M ij.j - Qi = 0, (i = 1,2)

Qi.i+Nijw,ij-q+kw = 0,

(ii) Constitutive relationships in n

Nij = Nij+ N~i

Nt = Gt{Ui.i+UjJ+ I~VUk,kbij}'

(la, b)

(Ic, d)

(Ie)

(2a)

(2b)

(2c)

(2d)
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(iii) Natural boundary conditions
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(2e)

Nn = Nijn;nj = Nn(on CN),

Mn = Mijn;n j = Un (on CM)'

(iv) Essential boundary conditions

Nns = Nijn;sj = Nns (on CN,.),

Mns = Mijn;sj = U ns (on CM ,.),

(3a, b)

(3c,d)

(3e)

t/Jn = t/J;n; = t/in (on C",), t/Js = t/J;s; = t/is (on C",),

w = w(on Cw),

(4a, b)

(4c,d)

(4e)

where a comma followed by a subscript indicates partial differentiation with respect to that
subscript, and the other untold symbols are listed in the Nomenclature.

2.2. Fundamental solutions
The fundamental solutions play an important role in the derivation of the boundary

integral equation. In this subsection, the construction of the fundamental solutions for
Reissner plates on an elastic foundation will be discussed in detail. The foundation may be
Winkler-type or Pasternak-type (Kerr, 1964). The governing equations used for deriving
the fundamental solutions are:

(i) Equations corresponding to in-plane deformations (Lei et al., 1990):

NL = ° (i = 1,2). (5a, b)

(ii) Equations corresponding to bending deformations in this case (Petrolito, 1989):

D[t/Jx,xx+ O.5(1-v)t/Jx.yy+O.5(1 +v)t/Jy,xy] + C(w.x-t/Jx) = 0,

D[0.5(1 + v)t/Jx.xy +0.5(1-v)t/Jy,xx + t/Jy,yy] +C(w.y- t/Jy) = 0,

C(V2w-t/Jx,x-t/Jy,y)+kw-q = 0,

(6a)

(6b)

(6c)

where k is the subgrade reaction operator, k = k for Winkler-type foundation,
k = kr-GrV

2 for Pasternak-type foundation (Kerr, 1964).
The fundamental solution corresponding to eqns (5a, b) is obviously Kelvin's solution

and can be found in the paper ofQin and Huang (1990).
In the following attention will be focused on finding the fundamental solution of eqns

(6a--<:).
The coupling of eqns (6a--<:) makes it difficult to generate the fundamental solutions.

To by-pass this problem, two of Hu's functions, 9 andj, are introduced such that

(7a, b)

The expressions (7a, b) are always possible but the solution is not unique. Indeed

go,x +fo,y = 0, go,y - fo,x = ° (8a, b)

are Cauchy-Riemann equations the solution of which always exists. As a consequence, t/Jx
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and t/Jy remain unchanged if f and g are replaced by f+fo and g+go. This important
property will be used in the subsequent part of the paper. The solution of eqns (8a, b) may
conveniently be expressed in a complex variable form :

fo+ig o = ¢(x+iy)

where i = J(=l).
The substitution ofeqns (7a, b) into eqns (6a, b), leads to

o[DV2g+C(w-g)J/ox+o[D(I-v)V2f/2-CfJ/oy = 0,

o[DV2g+ C(w-g)J/oy-o[D(I-v)V2f/2- CfJ/ox = o.

(9)

(lOa)

(lOb)

If the contents of the two brackets are considered as two independent generalized
functions, eqns (lOa, b) are of the same form as eqns (8a, b). Therefore eqns (lOa, b) also
represent a set of Cauchy-Riemann equations and, in the same manner as eqn (9), we can
set

[D(I-v)V 2f/2-CfJ+i[DV 2g+C(w-g)] = F(x+iy). (lOc)

Equation (lOc) is a nonhomogeneous equation with independent variables/, g and w.
Its solution can be composed of a homogeneous solution part and a particular part. Since
F(x+iy) is a harmonic function, the particular solutions of eqn (lOc) can be taken in the
form

fl +ig l = -F(x+iy)/C and Wi = O. (lOd)

It is obvious that the particular solution (lOd) leads to vanishing deflection and
rotations (i.e. w = t/Jx = t/Jy = 0). Therefore the particular solutions may be omitted and we
only need to consider the homogeneous part of eqn (lOc) :

D(I-v)V2f/2- Cf = 0,

DV2g+C(w-g) = O.

The substitution of eqns (7a, b) and (II b) into eqn (6c), leads to

As a result, we obtain, for f and g, the following set of differential equations:

k
DV4g+ CDV2g-kg+Q = 0,

V 2f-).,2f = O.

(lla)

(lIb)

(12a)

(12b)

(12c)

The corresponding displacements and rotations are obtained from the following
relations:

w = g-DV 2g/C,

t/Jx = g,x+ly,

t/Jy = g.y-Ix.

(l2d)

(7a)

(7b)

Equation (l2c) is the well-known modified Helmholtz equation and its fundamental
solution is
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(13)

where K o( ) is a modified Bessel function of zero order of the second kind.
The next step is to derive the fundamental solution of eqn (12a). To this end, consider

the homogeneous equation

in which b(P, Q) is the Dirac delta function, P and Q denote the source point and the field
point, respectively, and

for Winkler-type foundation, or

C\ = (y'iJ+kr/C+Gr/D)/2(1-Gr/C), C 2 = (y'iJ-kr/C-Gr/D)/2(1-Gr/C),

b = (kr/C+Gr/D)2+4kr(1-Gr/C)/D

for a Pasternak-type foundation.
To find the solution of eqn (14), we set

(15)

It follows from eqn (14) that

The solution of eqn (16) can be easily obtained as

A = Yo(j"C;r)/4D

in which Yo( ) is the Bessel function of zero order of the second kind.
In a similar way, let

then we have

The fundamental solution of eqn (19) is easily found to be

(16)

(17)

(18)

(19)

(20)

Subtracting eqn (15) from eqn (18) and by using eqns (17) and (20), the fundamental
solution g* can be given in the form

(21)
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In the absence of elastic foundation (C 1 = C2 = 0), the solution (21) reduces to

1
g* = -~r21n r

8nD .

Substituting eqns (13) and (21) [or (22)] into eqns (7a, b) and (12d), we have

w* = g*-DV 2g*jC,

l/J: = og*jox+oj*joy,

l/J: = og*joy-oj*jox.

(22)

(23a)

(23b)

(23c)

3. BOUNDARY INTEGRAL FORMULATION

The boundary integral equation for nonlinear Reissner plates on an elastic foundation
can be established by the variational approach (Jin and Qin, 1993). The approach is mainly
based on a modified variational principle. Following the line of argument of Jin and Qin
(1993), the modified principle for the present problem can be stated as

where

bIIffi = 0 => eqns (1), (3) and (4), (24)

2U = N·(u· +u +w W .)j2+M(,I... +,I· .. )j2+Q.(w .-.I·.)+kw2 .lJ E,] J,I ,I ,J I} 0/ l,} cy 1,/ 1 ,1 'Y I

The terminology "modified principle" refers, here, to the use of the conventional
potential function II I and some modified terms for the construction of a special variational
principle.

The proof of the principle and how to transform the modified functional into a
boundary integral equation has been discussed in the above-mentioned paper (Jin and Qin,
1993). It will not, therefore, be repeated in detail here. In the case under consideration, the
resulting formulation can be expressed in the form :

rx(P)Uk(P)- r {it~k)(P,Q)Nn-u}/~k)(P,Q)}dc
JCN~

_r {it~k)(P,Q)Nns-usN~~)(P,Q)}dc- r {it~k)(P,Q)Nn-unN~k)(p,Q)}dc
Jc~ Jc~

_r {it~k)(P,Q)Nns-usN~~)(P,Q)}dc= - r1W .iW ,jN t)(P,Q)dQ (27)
Jc~ In
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where rx(P) is a conventional boundary shape coefficient, rx(P) = I if PEn, rx(P) = 1/2 if
Pisonthesmoothboundaryoo.,{ul U2 U3 U4 U5}={U}={UI U2 r/JI r/J2 w}is
a displacement vector, and the asterisked symbol (*)(p) represents the related fundamental
solution which has been obtained in subsection 2.2, the components ut,{)(P, Q) of
{u}(p)(P,Q) mean the in-plane displacements (for q = 1 and 2) or the rotations (for q = 3
and 4) or the deflection (for q = 5) at the field point Q of an infinite plate when a unit point
force (for p = I, 2 and 5) or a unit point couple (for p = 3 and 4) is applied at the source
point P. {N}(p)(P,Q) can be calculated from {u } (p)(P, Q) by using the constitutive relation
ships (2). All of the fundamental solutions, {u}(p)(P, Q), are given in the Appendix.

4. NUMERICAL IMPLEMENTATION

The analytical solutions ofeqns (27) and (28) are not, in general, possible and therefore
a numerical procedure must be used to solve the equations.

To obtain a numerical solution ofeqns (27) and (28), as in the usual BEM the boundary
AN and the domain 0. of the plate are divided into a series of constant boundary elements
and constant cells, respectively. The node of an element is taken to be the centre of the
element. After performing the discretization and introducing boundary conditions, eqns
(27) and (28) are reduced to a system of algebraic equations:

[Q]{N} + [S]{u} = {Rd+{R 3},

[H]{M} + [G]{r/J} = {RJ + {R4},

(29)

(30)

where [Q], [S], [H] and [G] denote the coefficient matrices which can be calculated in the
usual way, {N} = {Nn Nns }, {u} = {un us}, {M} = {Rn Mn Mns }, {r/J} = {w r/Jn r/Js}.
These four vectors only include boundary variables, while {Rd and {R 2 } are inhomo
geneous terms which can be deduced from (27) and (28), and {R 3 } and {R 4 } contain
nonlinear terms:

{R 3 }q = - L1w.iW.jN~7)(Pq,Q)dQ

{R 4L = -1 Nijw.iw~)(Pq,Q)do..

(31a)

(31b)

Note that eqns (29) and (30) are not, in general, suitable for numerical analysis, an
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incremental form of the equations must therefore be adopted. Denoting the incremental
variable by the superimposed dot and omitting the infinitesimal element resulting from the
product of incremental variables, one obtains

[Q]{N} + [8]{u} = {Rd+{R 3 },

[H]{M'} + [G]{I/i} = {R 2 } + {R 4 }.

(32a)

(32b)

It follows that eqns (32a, b) are linear with respect to the incremental variables.
However, the right-hand side vectors {R 3 } and {R 4 } contain domain unknown variables;
to avoid solving these variables directly, an iterative procedure is required.

It is noted that {R 3 } depends only upon W [see eqn (31a)]. So as long as the value of
W in eqn (32b) has to be solved, we can compute the pseudo loading vector {R 3}, and then,
all of the unknown variables in eqn (32a) are at the boundary. We may solve it for UI and
U2' As a consequence, {R 4 } can be evaluated from the current values ofu" U2 and w. An
iterative scheme may be established according to the above analysis. The scheme is quite
similar to that in the paper of Qin and Huang (1990).

It is important to note that once the matrices [Q], [8], [H] and [G] in eqns (32a, b)
have been formed, they can be stored in the core and used in each cycle of iteration without
any change. That is because these matrices depend only upon the geometric and material
parameters of plates and foundations. Obviously it can save a large amount of computing
time.

5. NUMERICAL EXAMPLES

As numerical illustrations of the proposed method, three benchmark problems are
considered. In order to allow for comparisons with other solutions appearing in the ref
erences (Azizian and Dawe, 1985; Katsikadelis, 1991; Ng and Das, 1986), the obtained
numerical results are limited to a moderately thick plate with k = 0; a circular plate and a 60°
skew sandwich plate resting on Winkler-type elastic foundations. To study the convergence
properties of the proposed method, three meshes of the internal cell (or boundary element)
are used in the analysis. The convergence tolerance is 0.001. These examples are described
as following:

Example 1
A square plate with two opposite edges clamped and the others simply supported under

a uniformly lateral load q(Q = qa4/Eh 4
) and with thickness/span ratio t/a = 0.05. The

boundary conditions are

x = ±a/2, Un = Us = W = l/Jn = l/Js = 0,

y = ±a/2, Un = Us = W = Mn = l/Js = o.

Owing to the symmetry of the problem only one quadrant of the plate is modelled by
8 constant boundary elements and three meshes of the internal cell (3 x 3. 4 x 4 and 5 x 5).
Table 1 shows the central deflection (Wmax/t) of the plate and compares the result with the
finite strip solution (Azizian and Dawe, 1985).

Table 1. The centre deflection (wmax/t) of the square plate

Load Q 0.91575 4.5788 6.8681 9.1575

Finite strip 0.019908 0.098873 0.14694 0.19361

16 ceUs 0.019903 0.098511 0.14571 0.19035
BEM 25 0.019904 0.098623 0.14592 0.19127

36 0.019907 0.098625 0.14598 0.19135
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Table 2. Deflection Iii along the radius in a circular plate on an elastic foun-
dation (load step tJ.ij = 1)

rja 0.098 0.304 0.562 0.800 0.960

Katsikadelis 1.108 0.961 0.592 0.179 0.009

Present 12 b.e.t 1.096 0.950 0.584 0.171 0.0085
20 1.102 0.957 0.588 0.174 0.0088

BEM 30 1.109 0.960 0.590 0.175 0.0088

t b.e. = boundary elements.

Table 3. Variation of (wjh) with load Q for the sandwich plate (K = 20)

Q 25 50 75 100 125

BEM 48 b.e.t 0.581 0.864 1.0395 1.1692 1.2723
60 0.589 0.867 1.0412 1.1723 1.2802
80 0.596 0.872 1.0521 1.1750 1.2837

Exactt 0.60 0.87 1.05 1.18 1.30

tValues obtained from Ng and Das (1986), Fig. II, p. 375.

Example 2
A unifonnly loaded circular plate with radius R and clamped moveable edge (i.e.

w = "'n = "'S = Nn = Nns = 0) resting on an elastic foundation. Some parameters of the
problem are assumed as

a/h = 50, v = 0.3, ka 4 /D = 100, Q = qa4/Eh 4 = 15, W = w/h.

A quadrant of the plate is modelled by 25 internal cells and three meshes of boundary
element (16, 20, 24). Some results obtained by the proposed method are listed in Table 2,
and comparison is made with the known ones (Katsikadelis, 1991).

Example 3
Consider a unifonnly loaded 60° skew sandwich plate which is clamped immovable

(CI) on all edges (Le. UI = U2 = "'I = "'2 = W = 0 on the whole boundary) and shown in
Fig. I.

The plate under consideration is modelled by 8 x 8 internal cells, three boundary
meshes and (48,60,80) boundary elements, respectively. Some initial data are shown in
Fig. 1. Table 3 compares the results obtained using the present BEM and the method given
by Ng and Das (1986).

It can be seen from the three tables that the results are in excellent agreement with
other solutions. In the course of the computations, convergence was achieved with about
25 iterations for example I, 50 iterations for example 2 and 45 iterations for example 3 at
each loading step. As expected for all three examples, it was found from the numerical

2b!T7
x JL.A- ~=60°

~'~
o y

v = 0.32, t = 0.635 mm,
h = 25.4 mm, a = b = 508 mm,
Go = 6.89 MPa, Z = t+h,
Q = 12a3(1- v2)qj(tz2E),
K = 12a3k(l- v2)j(ztE).

Fig. I. A CI 60° skew sandwich plate resting on an elastic foundation.
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y
5 n

a

Fig. 2. The definition of P, 4> and r.

results that the deflection converges gradually to the exact one along with refinement of the
element meshes.

6. CONCLUDING REMARKS

Based on the procedure developed in the paper (Jin and Qin, 1993), a set of boundary
integrals for a nonlinear Reissner plate resting on an elastic foundation is obtained. Another
purpose of the paper is to obtain fundamental solutions for bending problems of Reissner
plates on an elastic foundation by means of two ofHu's functions and resolution method of
differential operator. Three numerical examples have been considered and the convergence is
achieved with a relatively small number of boundary elements and iterative cycles. Although
the proposed boundary integral equation and the numerical examples are confined to plates
on Winkler-type foundation, it is easy to extend the procedure to the case of Pasternak
type foundations.
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APPENDIX: FUNDAMENTAL SOLUTIONS {u}(m)

W) = I/I.~, = [C(Z,)+E(Z"Z,)]cos P sin (P-IjJ)-[D(Z3)+F(Z"Z,)] sin (2P-4»,

U~4) = 1/1:, = [C(Z3) +E(Z" Z,)] sin P cos (P-4» + [D(Z3) -F(Z" Z,)] sin (2P-4»,

where

I -I
A= B=----

2nD(C, +C,)' 4D(C, +C,)'

C(Z 3) = (1--V~nD [ K O(Z3)+ ~3 ( K, (Z3) - ~,)J
D(Z3) = (1-~)nD[KO(Z3) + ~3 (K,(Z3)- ~')J

E(Z"Z,) = BC, Yo(Z,)-AC,Ko(Z,),

F(Z"Z,) = BC, Y,(Z,)/Z, +AC,K,(Z,)/Z"

z, = )C;r, Z, = y'c;,r, Z3 = A.r.

SAS 30:22-F


